NEW DEFINITION OF SOLUTIONS TO HEAT-BASED SPDE راهحلهای جدید مبتنی بر روش اسپیدی |
کد مقاله : 1019-FEMATH7 |
نویسندگان |
بهروز صادقی * گروه ریاضی دانشکده علوم دانشگاه آزاد اسلامی واحد مرند |
چکیده مقاله |
We start by introducing a new definition of solutions to heat-based SPDEs driven by space-time white noise: SDDEs (stochastic differential-difference equations) limits solutions. We also examine briefly, through order parameters $\epsilon_1$ and $\epsilon_2$ multiplied by the Laplacian and the noise, the effect of letting $\epsilon_1,\epsilon_2\to 0$ at different speeds. More precisely, it is shown that the ratio $\epsilon_2/\epsilon_1^{1/4}$ determines the behavior as $\epsilon_1,\epsilon_2\to 0$. Similar to the zero drift case the equivalence assertion in Lemma \ref{GSDDE} follows as in the continuous time-space case from an equivalence of test function and Green function formulations argument, and the existence is a straightforward generalization of standard SDEs arguments and the details will be omitted. |
کلیدواژه ها |
Reaction-diffusion SPDE, SDDE |
وضعیت: پذیرفته شده برای ارسال فایل های ارائه پوستر |