NEW DEFINITION OF SOLUTIONS TO HEAT-BASED SPDE راه‌حل‌های جدید مبتنی بر روش اسپیدی
کد مقاله : 1019-FEMATH7
نویسندگان
بهروز صادقی *
گروه ریاضی دانشکده علوم دانشگاه آزاد اسلامی واحد مرند
چکیده مقاله
We start by introducing a new definition of solutions to heat-based
SPDEs driven by space-time white noise: SDDEs
(stochastic differential-difference equations) limits solutions.

We also examine briefly,
through order parameters $\epsilon_1$ and $\epsilon_2$ multiplied by the
Laplacian and the noise, the effect of letting
$\epsilon_1,\epsilon_2\to 0$ at different speeds. More precisely,
it is shown that the ratio $\epsilon_2/\epsilon_1^{1/4}$ determines
the behavior as $\epsilon_1,\epsilon_2\to 0$.

Similar to the zero drift case the equivalence assertion in Lemma \ref{GSDDE} follows as in the continuous time-space case from an equivalence of test function and Green function
formulations argument, and the existence is a straightforward generalization of standard SDEs arguments and the details will be omitted.
کلیدواژه ها
Reaction-diffusion SPDE, SDDE
وضعیت: پذیرفته شده برای ارسال فایل های ارائه پوستر
login